Near-Threshold Bursting Is Delayed by a Slow Passage near a Limit Point
نویسندگان
چکیده
In a general model for square-wave bursting oscillations, we examine the fast transition between the slowly varying quiescent and active phases. In this type of bursting, the transition occurs at a saddle-node (SN) bifurcation point of the fast-variable subsystem when the slow variable is taken to be the bifurcation parameter. A critical case occurs when the SN bifurcation point is also a steady solution of the full bursting system. In this case near the bursting threshold, the transition suffers a large delay. We propose a first investigation of this critical case that has been noted accidentally but never explored. We present an asymptotic analysis local to the SN point of the fast subsystem and quantitatively describe the slow passage near the SN point underlying the transition delay. Our analysis reveals that bursting solutions showing the longest delays and, correspondingly, the bursting threshold appear near but not exactly at the SN point, as is commonly assumed.
منابع مشابه
Slow acceleration and deacceleration through a Hopf bifurcation: power ramps, target nucleation, and elliptic bursting.
From the periodicity of regional climate change to sustained oscillations in living cells, the transition between stationary and oscillatory behavior is often through a Hopf bifurcation. When a parameter slowly passes or ramps through a Hopf bifurcation there is a delayed transition to sustained oscillations and an associated memory effect where onset is dependent on the initial state of the sy...
متن کاملNear-Optimal Controls of a Fuel Cell Coupled with Reformer using Singular Perturbation methods
A singularly perturbed model is proposed for a system comprised of a PEM Fuel Cell(PEM-FC) with Natural Gas Hydrogen Reformer (NG-HR). This eighteenth order system is decomposedinto slow and fast lower order subsystems using singular perturbation techniques that provides tools forseparation and order reduction. Then, three different types of controllers, namely an optimal full-order,a near-opti...
متن کاملMixed-Mode Oscillations in a Multiple Time Scale Phantom Bursting System
In this work we study mixed mode oscillations in a model of secretion of GnRH (Gonadotropin Releasing Hormone). The model is a phantom burster consisting of two feedforward coupled FitzHughNagumo systems, with three time scales. The forcing system (Regulator) evolves on the slowest scale and acts by moving the slow null-cline of the forced system (Secretor). There are three modes of dynamics: p...
متن کاملBursting in a Subcritical Hopf Oscillator with a Nonlinear Feedback
Bursting is a periodic transition between a quiescent state and a state of repetitive spiking. The phenomenon is ubiquitous in a variety of neurophysical systems. We numerically study the dynamical properties of a normal form of subcritical Hopf oscillator (at the bifurcation point) subjected to a nonlinear feedback. This dynamical system shows an infinite-period or a saddle-node on a limit cyc...
متن کاملBearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis
Stability of foundations near slopes is one of the important and complicated problems in geotechnical engineering, which has been investigated by various methods such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The complexity of this problem is resulted from the combination of two probable failures: foundation failure and overall slope failure. The curr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 57 شماره
صفحات -
تاریخ انتشار 1997